
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 183 (2006) 123–133
Bayesian and information theory analysis
of MAS sideband patterns in spin 1/2 systems

Joseph R. Sachleben

Department of Chemistry, Otterbein College, Westerville, OH 43081, USA

Received 11 April 2006; revised 3 July 2006
Available online 8 September 2006
Abstract

Bayesian statistics and information theory are used to analyze the reliability of extracting chemical shift parameters from spinning
sideband patterns of spin 1/2 systems. Efficient code has been written to calculate the two-dimensional posterior probability as a function
of the chemical shift anisotropy, d, and the asymmetry parameter, g, given the sideband intensities and the signal-to-noise ratio. This
method has the advantage of assuming only that the noise in the sideband intensities is distributed as a Gaussian. It assumes nothing
about the distribution of the values of parameters d and g, which are shown in some cases to be highly non-Gaussian. The utility of
Bayesian analysis is demonstrated on 1D slow-spinning MAS spectra and on sideband patterns extracted from 2D PASS spectra. Pre-
vious investigations have shown that there is an optimal range of spinning frequencies for determining d. In this study, information the-
ory is used to determine the signal-to-noise ratio dependence of the entropy in d, g, and total entropy in spinning sideband spectra. The
entropy is a measure of the information content of a probability distribution. When the entropy is zero, there is perfect information on a
system, while if it is infinite, there is no information on the system. It is found that for all values of g and for signal-to-noise ratios in the
range 50–1000, an entropy minimum in md/mr occurs for values 1.5 6 md/mr 6 3. In the same range of signal-to-noise ratios, the entropy in g
is a monotonically decreasing function of md/mr. The global information content of a spinning sideband pattern (i.e., the total entropy) is
dependent on the signal-to-noise ratio and has an optimal value at md/mr � 2 at a signal-to-noise ratio of 50 and increasing to �2.5 for
signal-to-noise ratios of 1000. Finally, the increase of information in a sideband pattern as a function of the number of sidebands used in
the analysis is examined. Most of the information about d and g is contained in the five central sidebands; i.e., sidebands �2 to 2.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The goal of measuring NMR spectra is to determine the
basic parameters that give rise to the spectrum and to
extract physical or chemical information about the system
from these parameters. For instance, by determining the
chemical shift anisotropy (CSA) of a spin 1/2 nucleus in
a solid, one can determine the symmetry of the local nucle-
ar environment and thus the bond hybridization and coor-
dination number of the site and the dynamics of that region
of the solid. Ascertaining the certainty with which the
parameters are determined is a critical step in determining
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the reliability of results and extracting chemical
information.

In solid-state NMR, we are often interested in determin-
ing three parameters for each chemical environment: the
isotropic chemical shift (miso), the chemical shift anisotropy
(d), and the asymmetry parameter (g) [1,2]. These parame-
ters can be extracted from both the static powder patterns
and the intensities of magic angle spinning (MAS) sideband
patterns. The occurrence of spinning sideband patterns was
originally described by Mariq and Waugh [3] and by Herz-
feld and Berger [4]. These papers described the source of
the spinning sidebands in the MAS spectrum and demon-
strated that the CSA parameters could be determined from
the intensities of the sidebands. Herzfeld and Berger [4]
supplied a series of graphs of relative sideband intensity
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as a function of CSA parameters for different sideband
orders that allows the graphical extraction of the CSA
parameters. The difficulties in establishing precise tensor
values when g is close to zero [5] and a method of estimat-
ing the standard deviation in the tensor parameters [6] were
discussed in the literature in the late 1980s and early 1990s.
Olivieri analyzed the errors in d and g by inverting the Hes-
sian matrix of the sidebands with respect to the parameters
[7]. Hodgkinson and Emsley [8] provided a rigorous analy-
sis of the uncertainty of the CSA parameters in the limit
that the errors are distributed as a Gaussian and demon-
strated that it is quicker to determine these parameters with
a given uncertainty from MAS sideband patterns than
from a static powder pattern. They showed at one signal-
to-noise ratio that there is an optimal value of the ratio
of the chemical shift anisotropy to the rotation frequency,
td/tr, where td = dt0 and t0 is the Larmor frequency of the
nucleus, which minimizes the error in d. In their simula-
tions, they find that the optimal value is td/tr = 2.56.

In the following, the aim is to remove some of the limi-
tations of previous work and extend the analysis to the
amount of information present in a spectrum of given sig-
nal-to-noise ratio. Unfortunately, until the last 10 years,
performing Bayesian statistical analysis and rigorously
extracting confidence intervals of CSA parameters has been
difficult due to the non-linearity of the problem and limita-
tion in computation power. In this time-period, Bayesian
analysis has been used to address many problems in
NMR spectroscopy. Starting with the pioneering work of
Bretthorst, who used Bayesian analysis to analyze liquid-
state NMR spectra, [9–12] it has been applied to many
diverse NMR problems including automated signal recog-
nition in 2D NMR, [13] estimation of dynamic parameters
from relaxation data, [14] analysis of protein sidechain rot-
amer preferences, [15] identification of helix content in sol-
id peptides, [16] and to extract CSA parameters from
spinning sideband patterns [17]. In this paper, an efficient
method of calculating the errors in CSA parameters from
MAS sideband patterns is demonstrated. Previous analyses
of errors either explicitly or implicitly assumed that the
errors in the parameters were distributed as a Gaussian.
In the following, a Bayesian analysis approach has been
used to calculate the posterior probability that the data
are described by a set of values of the parameters. This
approach allows a map of probability versus CSA param-
eters and peaks in this plot are ‘‘good fits’’ to the measured
sideband intensities. For this analysis, it is assumed that the
noise in the spectrum is white, i.e., not dependent on fre-
quency, and distributed in Gaussian fashion about the true
value, but it is not assumed that the errors in the parame-
ters are distributed as a Gaussian. It will be shown that in
some cases the probability distribution for the parameter is
decidedly non-Gaussian. In addition, if the frequency
dependence of the noise is known from the action of a fil-
ter, for instance, it is easily included in this formalism. Effi-
cient C code has been developed to implement the Bayesian
analysis of sideband patterns and examples with 1D 13C
MAS and 2D 13C PASS spectra will be shown. This paper
also examines the information content of MAS spectra as a
function of the signal-to-noise ratio and the number of
sidebands analyzed.

2. Theoretical and computational

Bayesian statistics gives a fundamentally different inter-
pretation of probability than does traditional statistics. In
traditional statistics, probability is the long-term relative
frequency with which an event occurs. Since it takes an infi-
nite number of measurements to determine this long-term
relative frequency, traditional statistics concentrates on
determining this population distribution from a small sam-
ple taken from it. Bayesian statistics does not assume the
existence of an unmeasured and immeasurable population
distribution. Instead, it interprets the probability as a ‘‘de-
gree of belief’’ that something is true based on the evidence
acquired [18]. In the case of spinning sideband patterns in
magic angle spinning NMR spectroscopy, the probability
of the parameters d and g given the set of sideband inten-
sities, ~I, the signal-to-noise ratio, SN, and the background
information, BI is of interest. This posterior probability is
represented by P ðd; gj~I; SN;BIÞ. Bayes’ Theorem relates
this probability to other more easily determined probabili-
ties by

Pðd; gj~I; SN;BIÞ ¼ P ð~Ijd; g; SN;BIÞP ðd; gjBIÞ
P ð~IjSN;BIÞ

: ð1Þ

Pð~IjSN;BIÞ is the probability of the sideband intensities
given the background information and the signal-to-noise
ratio. This term, called the evidence, is only a part of a nor-
malization factor in the current application. P(d,gjBI) is the
prior probability; that is, the probability of d and g given
the background information [18]. By choosing the experi-
mental conditions correctly, one already has information
about d and g. For instance, if the sweepwidth is chosen
properly, then it is known that—sw/2 6 d 6 sw/2 and it
is always known that 0 6 g 6 1. In this report, a uniform
prior probability is assumed, which says that the probabil-
ity that the parameter is in some range is just the inverse of
the range, or

Pðd; gjBIÞ ¼ 1

ðdupper � dlowerÞðgupper � glowerÞ

¼ 1

ðdupper � dlowerÞ
¼ 1

sw
; ð2Þ

where the range in g is assumed to be from 0 to 1 and d is
within the sweepwidth of the experiment. For the analysis
of any given set of data, this is also just part of the normal-
ization constant. This allows us to rewrite Eq. (1) as

Pðd; gj~I; SN;BIÞ ¼ NP ð~Ijd; g; SN;BIÞ; ð3Þ
where N is the normalization constant.

Eq. (3) shows that the posterior probability is propor-
tional to the likelihood function, P ð~Ijd; g; SN;BIÞ; the
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probability of the sideband intensities given d and g, the
signal-to-noise ratio and the background information
[18]. Assuming that the noise in each sideband is distribut-
ed as a Gaussian, the probability that a measured sideband
intensity, Ii, is described by some value of d and g given the
signal to noise ratio and the background information is

P ðI ijd; g; SN;BIÞ ¼ 1

ri

ffiffiffiffiffiffi
2p
p exp �ðI i � ISim

i Þ
2

2r2
i

 !
: ð4Þ

As long as the sidebands of different orders are well sepa-
rated, they can be measured independently, which makes
the likelihood function the product of the probabilities
for each sideband,

P ð~Ijd; g; SN;BIÞ ¼ P
NMax

SB

i¼NMin
SB

1

ri

ffiffiffiffiffiffi
2p
p exp �ðI i � ISim

i Þ
2

2r2
i

 !
: ð5Þ

This allows us to rewrite the posterior probability as

P ðd; gj~I; SN;BIÞ ¼ N exp � 1

2
v2

� �
; ð6Þ

where

v2 ¼
XNMax

SB

i¼NMin
SB

ðI i � ISim
i Þ

2

r2
i

ð7Þ

and NMin
SB , N Max

SB are the minimum and maximum values of
the sideband order analyzed. Analyzing MAS spectra using
these equations is equivalent to examining the two-dimen-
sional v2 for the fit of d and g; however, the analysis of pos-
terior probability has several advantages. The first of these
is the intuitiveness of examining a probability distribution
especially within the Bayesian interpretation as a ‘‘degree
of belief’’ in the determined parameters. Second is the ease
of converting the posterior probability into a confidence
interval. Finally, the probability distribution can be
mapped into the entropy, which allows the comparison of
the information content of spinning sideband patterns ac-
quired under different conditions.

A one-dimensional N%x confidence interval for a
parameter x is the minimum interval of the parameter con-
taining N%x of the area under the posterior probability. In
a multidimensional case, the posterior probability must be
projected onto the axis of interest, and then the confidence
interval is found on the resulting one-dimensional posterior
probability. In the analysis of MAS sideband patterns, this
process can be represented as

N%d ¼ 100

Z dmax

dmin

Z 1

0

Pðd; gj~I; SN;BIÞdgdd ð8Þ

for d, and as

N%g ¼ 100

Z gmax

gmin

Z 1

�1
P ðd; gj~I; SN;BIÞdddg ð9Þ

for g, where the posterior probability is normalized to 1
and the intervals Dd = dmax � dmin and Dg = gmax � gmin

are of minimum length. Eq. (8) finds the limits of the con-
fidence interval in d by projecting over all possible values of
g and then integrating from dmin over d until the area be-
tween dmin and dmax equals N%d/100. This defines dmax

for a given value of dmin. dmin is then varied to minimize
the distance between dmin and dmax, which defines the con-
fidence interval. The confidence interval for g defined in
Eq. (9) is found similarly. Such confidence intervals can
easily be found numerically.

Eqs. (6) and (7) assume that the noise in the sideband
intensity is distributed as a Gaussian, but assume nothing
about the distribution of the values of d and g. For
instance, in cases where the problem is underdetermined,
i.e., an insufficient number of sideband intensities have
been measured, multimodal probability distributions
result. The distribution of g is commonly non-Gaussian
due to the finite range of the possible values of g. In all
the data analyzed in this paper, the noise is assumed to
be constant as a function of frequency. With modern
NMR equipment utilizing good digital filtering this is nor-
mally an appropriate assumption; however, if there is sig-
nificant frequency dependence of the noise this can be
included into Eq. (7) by using different values of ri for each
sideband intensity. In this case, the simulated sideband
intensities would also need to be corrected by the measured
filter function.

In order to efficiently simulate the posterior probability
distribution, an efficient method of comparing the simulat-
ed spinning sideband intensities with the measured is need-
ed. Every sideband pattern is uniquely determined by the
parameters td/tr and g, allowing the efficient simulation
of a lookup table of sideband patterns. Using Eqs. (1),
(6), (7), and the lookup table of sideband intensities, the
two-dimensional posterior probability function can be
quickly generated from the measured sideband intensities.
This function gives the probability that pairs of values of
d and g describe the measured sideband intensities. Peaks
in this map indicate regions of values of d and g that have
a high probability of describing the data. Source code for
these programs is available upon request from the author.
Fig. 1a and b shows that this method correctly extracts val-
ues of d and g. A simulated MAS sideband pattern
(d = 80.0 ppm, g = 0.400, mrot = 1500 Hz, spectrometer fre-
quency = 100 MHz, and SN = 240) was analyzed with the
Bayesian program. The resulting posterior probability dis-
tribution, Fig. 1b, was calculated in less than 1 min and
shows a single strong probability peak near the appropriate
values of d and g. The values determined at the 95% confi-
dence level are d = 80.2 ± 1.0 ppm and g = 0.394 ± 0.025,
indicating that the true values are properly bracketed and
that this procedure is both accurate and computationally
efficient.

The optimal conditions to acquire spinning sideband
patterns in order to produce the most information in the
least time were analyzed. For this comparison, the total sig-
nal-to-noise, SN, was defined as the ratio between the noise
at the end of the FID to the signal in its first point, or,
equivalently, as the ratio of the noise between the side-



Fig. 1. (a) Simulated spinning sideband pattern with the following
parameters miso = 0 ppm, d = 80.0 ppm, g = 0.400, mrot = 1500 Hz, Larmor
frequency for nucleus = 100 MHz, and the signal-to-noise ratio = 240.
The signal-to-noise ratio is the total sideband intensity to the noise. (b)
Two-dimensional posterior probability distribution for the simulated
sideband pattern in (a). The 95% confidence intervals for d and g show
that the Bayesian analysis properly brackets the original parameters used
for the simulation. (c) d-Function probability distribution with a value of
xmax. Such a distribution has an entropy of zero. (d) An infinitely diffuse
distribution function, i.e., a distribution that is perfectly flat but whose
area is 1. Such a distribution has infinite entropy since there is no
information on the value of the x. (e) A Gaussian distribution of the
parameter x with a width of 2r and a peak at xmax. (f) Simulation of the
entropy as a function of the logarithm of the percent error defined as
Percent error ¼ 100 stdðxÞ

xmax
. Since the simulation was performed over a finite

range in x, the maximum entropy was defined as 100. Notice that the
entropy scales linearly with the logarithm of the percent error until the
peak is broader than the range, which results in a scaled entropy of
approximately 100.
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bands to the total intensity in all the sidebands. In order to
conveniently compare the error in different experimental
situations, i.e., for various values of td/tr, g, and SN, pos-
terior probability distributions must be reduced to a single
number that reflects the information content of the distri-
bution. The entropy, S, of a one-dimensional function is
defined as

S ¼ �
Z

p lnðpÞdx ¼ �
XN

i¼1

pi lnðpiÞDxi; ð10Þ

where the sum is over all elements of the probability distri-
bution. For a multidimensional probability distribution,
the entropy is the multidimensional integral of �plnp.
The entropy maps the probability distribution into a single
number and allows the comparison of the information con-
tent in different probability distributions. The smaller the
entropy, the more certain one is of the result. For instance,
if the result is perfectly certain, then the probability distri-
bution is a delta function at the value of the parameter,
Fig. 1c. In this case, the entropy has a value of 0. In the
case where the probability distribution is flat over all space
but the area under it integrates to one, Fig. 1d, the entropy
is infinite, i.e., there is no information about the values of
the parameters. We use the entropy to examine the infor-
mation content of spinning sideband patterns under differ-
ent experimental circumstances.

As an empirical measure of the entropy, the step size in d
and g is ignored, and entropy is calculated by

S ¼ �
XN

i¼1

pi lnðpiÞ ð11Þ

where pi is normalized posterior probabilities, defined byPN
i¼1pi ¼ 1. This definition of the entropy will depend on

the number of steps in d and g. To account for this, an
entropy scale for the investigation of experimental parame-
ters on information content has been defined. In this entro-
py scale, the maximum entropy is 100, which corresponds to
no information on the value of the parameter(s), while the
minimum entropy is 0 which corresponds to perfect infor-
mation, which corresponds to only one value of d and g
describing the data. Since the probability distributions are
found over a finite range of parameters with a discrete step
size, a flat distribution does not lead to infinite entropy. In
the case where all values in the two-dimensional plane are
equally probable, Pi = 9.98 · 10�7 under the conditions of
our simulations, indicating that our data have equal proba-
bility of being described in the region of our simulation. In
this case, S = �NPiln(Pi) = �ln(9.98 · 10�7) = 13.818,
which is the maximum value of the entropy for the 2D sim-
ulations. For the one-dimensional case where all values are
equally probable, the maximum entropy is given by
S = �ln(9.99 · 10�4) = 6.9087. These values have been nor-
malized to 100 in the entropy simulations to ease the inter-
pretation of the results. Fig. 1e and f shows the entropy of a
Gaussian probability distribution as a function of the per-
cent error, which is defined as
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Percent error ¼ 100
stdðxÞ
xmax

; ð12Þ

where std(x)and xmax are the standard deviation and aver-
age position of the Gaussian. Fig. 1f shows the entropy as a
function of the log of the percent error. The entropy scales
linearly with the log of the percent error, demonstrating
that it acts as a measure of the error. The relationship be-
tween the entropy and the percent error is complicated in
the general case; however, it is clear that the smaller the
entropy the smaller the error on the value of the parame-
ter(s) determined.

3. Methods

3.1. NMR

119Sn MAS spectra of Sn(II) oxalate (Aldrich) were
acquired at 67.1 MHz on a Chemagnetics CMX180
NMR spectrometer with a rotor synchronized Hahn echo
experiment. Two hundred and fifty-six free induction
decays with 512 complex points were acquired over a sweep
width of 100 kHz and with a recycle delay of 10 s. MAS
spectra with spinning frequencies of 5.5 and 6.2 kHz were
acquired in order to assign an isotropic chemical shift of
Sn(II) oxalate of �871 ppm. Spectra were externally refer-
enced to SnO whose isotropic shift is �199 ppm with
respect to Sn(CH3)4.

The 1H decoupled 13C 2D PASS spectrum [19] of the
yttrium glutarate MIL-8 [20] was acquired with 2 ms cross
polarization, CW decoupling (50 kHz decoupling field),
and a spinning frequency of 750 Hz. Sixteen sideband
phase altered spectra with 1024 complex points in each
were acquired. These spectra were copied and appended
to the file eight times, which after shearing, zero-filling in
the MAS time domain, and Fourier transformation leads
to a spectrum with the infinite spinning frequency MAS
spectrum along one axis and the sidebands along the other.
Appending the copies of the fid to the sideband dimension
interpolates zeros between the sidebands. All spectra and
posterior probability functions were processed and viewed
with Philip Grandinetti’s program RMN [21].

3.2. Computational

All simulations presented in this paper were run on a Sil-
icon Graphics O2, a Pentium III PC running Linux, or a
MacIntosh G3 iBook using code written in C by the
author. A table of sideband intensities as a function of
md/mrot and g were simulated in the region 0 6 td/tr 6 7
and 0 6 g 6 1 with 1001 steps of size 0.007 and 0.001,
respectively. MAS sideband patterns were simulated by
dividing one rotor period into 2n steps, where n is the high-
est order sideband desired, and then propagating the initial
density matrix over one rotor period. Powder averaging
was performed by using a 3-angle set with 3722 members
generated by the ZCW algorithm, which was kindly sup-
plied by Malcolm Levitt [22]. Sideband intensities were
produced by Fast Fourier Transforming the data. The
resulting table contains 17 sidebands (orders �8 to 8) for
each value of td/tr and g. Posterior probability functions
were calculated by comparing sideband intensities of the
experimental data with the 1,002,001 simulated sideband
patterns using the maximum likelihood predictor and the
input signal-to-noise ratio of the spectrum. In a typical
run of the Bayesian program, a file of sideband intensities
and the rms noise of the spectrum are input and a two-di-
mensional, d versus g posterior probability function is cal-
culated and visualized using RMN. RMN is then used to
project the data onto the two parameter axes. These 1D
distributions are then used as input files for a program that
calculates the confidence interval. The posterior probability
is normalized so that the sum over all the simulated points
is 1. Projections onto the two axes give one-dimensional
posterior probabilities from which confidence intervals in
d and g can be calculated. One-dimensional N% confidence
intervals were found by minimizing the interval on the
parameter axis under the constraint that N% of the area
under the posterior probability was found in that interval.

4. Results and discussion

To test Bayesian analysis on real samples, the spinning
sideband patterns of a 1D, 119Sn MAS spectrum of Sn(II)
oxalate and sideband patterns of the carbonyl carbons of
the yttrium glutarate MIL-8 taken from a 13C 2D PASS
spectrum of the sample have been analyzed. Fig. 2a shows
the 119Sn MAS spectrum of Sn(II) oxalate. The signal-to-
noise ratio (total intensity of all sidebands divided by the
noise between the sidebands) of this spectrum is 226. The
isotropic shift is �871 ppm. Fig. 2b shows the simulated
sideband pattern using the most probable values of d and
g from the Bayesian analysis. Fig. 2c shows the 2D poster-
ior probability distribution function and the 1D projec-
tions. From these it was found that
d = �624.8 ± 7.6 ppm and the most probable value of g
was 0.098 but the confidence interval indicates that
g 6 0.145 with 95% confidence. Notice in particular that
the probability distribution for g is not distributed as a
Gaussian because the minimum value of g is 0. Fig. 3a
shows the 13C 2D PASS spectrum of the microporous yttri-
um glutarate MIL-8. MIL-8 has an array of yttrium(III)
ions supported by the dicarboxylic glutaric acid. The glu-
taric acid molecules arrange themselves between the lattice
of metal ions in such a way as to form one-dimensional
channels from which water can be exchanged [20,23].
Fig. 3b–d show the extracted spinning sideband patterns
of the three resolved carbonyl peaks of the sample as well
as their posterior probability distributions and the simulat-
ed sideband patterns for the most probable value of the
parameters. While the isotropic shifts of these three sites
are very similar, the resolution is sufficient for the three car-
bonyl sites to be distinguished and their CSA parameters
extracted. Fig. 3b–d shows that the CSA parameters clearly



Fig. 2. Bayesian analysis of the 119Sn spinning sideband pattern of Sn(II)
oxalate acquired on a CMX180 NMR spectrometer at a Larmor
frequency of 67.1 MHz acquired with a rotor synchronized Hahn echo
sequence. (a) The 119Sn MAS spectrum acquired at a spinning frequency
of 6.2 kHz. The signal-to-noise ratio (intensity of all sidebands/noise) of
this spectrum is 218. The isotropic peak was identified by running a second
experiment at a spinning frequency of 5.5 kHz. (b) The simulation of the
most probable sideband pattern determined from the posterior probability
function for d and g for the spectrum in (a). The most probable value of d
and g were determined to be �624.8 ppm and 0.098, respectively. (c)
Posterior probability distribution for d and g. The distribution shows a
single peak that gives d = �624.8 ± 7.6 ppm and g 6 0.145 at 95%
confidence.

Fig. 3. Bayesian analysis of the 13C spinning sidebands patterns of the
carbonyl carbons of the yttrium glutarate MIL-8 extracted from the 2D
PASS experiment. (a) The 2D PASS spectrum of yttrium MIL-8. The
horizontal axis corresponds to the infinite spinning speed MAS spectrum,
while the vertical axis contains only the sideband patterns. (b–c) Bayesian
analysis of the three carbonyl peaks at the isotropic shifts 185, 186, and
188 ppm. It is clear from the posterior probability distributions and the
resulting confidence intervals that the chemical shift anisotropies of these
three sites are significantly different.
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distinguish the three nuclear environments of the three car-
bonyl sites in the sample and that there is excellent agree-
ment between the most probable sideband patterns and
the data. In cases where there is correlation in the error
between d and g (data not shown), the correlation is indi-
cated by an oval shape of the peak in the probability distri-
bution that is not aligned with either axis. The tilt of the
major axis of the oval is related to the correlation coeffi-
cient of d and g. These examples demonstrate that Bayesian
analysis is a very powerful technique for the analysis of sol-
id-state NMR data. The errors determined by this method
are much lower than initially expected. Relative errors in d
of about 1% have been determined in these examples, while
for g the error was less than 5%, in the case where it could
be determined. (In cases where g = 0, the relative error is
meaningless.) These values are consistent with those seen
in the simulations shown in Fig. 1.
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In the rest of this paper, the effects of different experi-
mental conditions on the information content of an MAS
spinning sideband pattern are examined. In Fig. 4, the
dependence of the entropy of the d, g projections of the
posterior probability—these are called the entropy in d
and g—as well as the total entropy in the full 2D posterior
probability as a function of the values of td/tr, g, and the
signal-to-noise ratio are examined. The entropy maps of
d, left column in Fig. 4, show a minimum at values of td/
tr between about 1.5 and 3.0 for all values of g and the sig-
nal-to-noise ratio. This indicates that the error in d can be
minimized if td/tr is in this range. This is consistent with the
result of Hodgkinson and Emsley which indicates that the
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her signal-to-noise, td/tr closer to 3 are acceptable. The numbers in these
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tion of the most accurate values of d and g in a single spec-
trum at a given signal-to-noise ratio. The right column in
Fig. 4 shows that there is a minimum in the total entropy;
however, it is much more shallow than that seen in the d
entropy. There is also a slight signal-to-noise ratio depen-
dence of the optimal relative spinning frequency. At
SN � 50, the entropy minimum occurs at values of td/tr

� 2. At higher signal-to-noise ratios, SN � 500, the entro-
Fig. 5. Information content as a function of the number of inner sidebands ana
(n) labeled. (tsideband = viso + nvrot). (b) Posterior probability distributions for
and 1 are analyzed, a trimodal distribution results. Once the sidebands �2, �
brackets the values of d and g used to simulate the spectrum in (a). More sideb
(c) Plot of the entropy as a function of maximum sideband order analyzed, jNm

S

central 5 sidebands with orders from �2 to 2.
py minimum occurs at td/tr � 2.5. For noiseless signals,
SN �1, any finite spinning frequency will lead to perfect
information about the values of d and g. In practical situ-
ations where the signal-to-noise ratio is between 50 and
500, the spinning frequency should be adjusted so that
td/tr is between 2 and 2.5 to produce the most accurate val-
ues of d and g in the least amount of time. This corresponds
to having significant sideband intensity in between 5 and 7
  

lyzed. (a) The same simulated spectrum as in Fig. 1 with the sideband order
different numbers of sidebands analyzed. When only the sidebands �1, 0,

1, 0, 1, and 2 are analyzed, a monomodal distribution is observed that
ands result in narrowing the peak in the posterior probability distribution.
ax

B j. Most of the information in the simulated spectrum is contained in the



Fig. 6. The entropy as a function of td/trot, the number of sidebands
analyzed, and the signal-to-noise ratio. Sidebands were always analyzed
symmetrically about the isotropic peak so that the number of inner
sidebands ¼ 2jNmax

SB j þ 1. The information content depends on the
spinning frequency, the signal-to-noise ratio and the number of sidebands.
The numbers in these plots indicate the value of the entropy where 0
means perfect information and 100 means no information about the CSA
parameters.
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spinning sidebands (for 5 sidebands, sideband orders �2 to
2; for 7 sidebands, sideband order �3 to 3). The variation
in optimal relative spinning frequency with signal-to-noise
ratio suggests that at lower SN it is better to spin so that
only 5 sidebands are observed whereas in more easily
observed samples, it is better to spin at a slightly lower fre-
quency so that 7 sidebands are visible. The choice of the
optimal relative spinning frequency will be determined by
the ease with which the spectrum can be acquired. For sam-
ples with long relaxation times or very low gyromagnetic
ratios, it is better to choose slightly faster spinning frequen-
cies, td/tr � 2, because of the difficulty in acquiring high
signal-to-noise spectra. For samples where the signal-to-
noise ratio is not a problem, slightly lower spinning fre-
quencies, td/tr � 2.5, will allow the quickest acquisition
of accurate values of d and g.

In some samples, it is not possible to measure all poten-
tially observable sidebands due to spectral overlap or other
sample related problems. For this reason, the information
content as a function of the number of sidebands has been
analyzed. In Fig. 5, the 2D posterior probability distribu-
tion and the information content of the spinning sideband
pattern changes as more inner sidebands are analyzed.
Fig. 5a shows the same simulated sideband pattern as ana-
lyzed in Fig. 1 with the sideband orders labeled. Fig. 5b
shows the progression of the 2D posterior probability func-
tion as more sidebands are analyzed. When sidebands �1
to 1 are analyzed, the probability distribution is trimodal
with peaks near d = 48 and g = 0, d = 77 and g = 0.45,
and d = 85 and g = 0.3. When sidebands �2 to 2 are ana-
lyzed the probability distribution becomes monomodal
with d = 79 and g = 0.4, close to the values used to simu-
late the spectrum. As more sidebands are analyzed the dis-
tribution becomes narrower but it is clear that most of the
information is present in the �2 to 2 sidebands. This is con-
firmed in Fig. 5c, where the entropy of these distributions is
plotted as a function of maximum sideband order, jN max

SB j,
analyzed. When only the centerband is analyzed, there is
no information on the CSA parameters so the entropy
has the maximum value of 100. As more sidebands are add-
ed to the analysis, the entropy quickly drops to the limiting
value of 51. When the �2 to 2 sidebands are analyzed, the
entropy has already reached a value of about 55 indicating
that most of the information present in the sideband pat-
tern has been extracted.

Fig. 6 shows the dependence of the total entropy on the
number of inner sidebands, td/tr, and the signal-to-noise
ratio. At a signal-to-noise ratio of 50, for td/tr between 1
and 3, the entropy approaches a constant value for 3 or
more central sidebands (sideband orders �1 to 1) indicat-
ing that most of the information is in the central 3 side-
bands at these relative spinning frequencies. For td/tr

between 4 and 5.5, the number of sidebands necessary to
get most of the information present in the spectrum
increases to 5 (sideband orders �2 to 2), but the entropy
and thus the uncertainty in the CSA parameters has slightly
increased in this region. For td/tr from 5.5 to 6 (the limit of
my simulation), another entropy minimum is observed but
now at least 7 (sideband orders �3 to 3) inner sidebands
need to be analyzed. As the signal-to-noise ratio increases
to 250 and then 500, three significant changes occur in
these entropy plots. First, the minimum value of td/tr to
minimize the entropy increases to above 1.5. Second, the
secondary minimum for td/tr greater than 5.5 does not
appear. Third, a new entropy minimum occurs at td/tr

between 2.5 and 3. In this region, most of the CSA infor-
mation is contained in the central 5 sidebands. This con-
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firms the previous argument that at low signal-to-noise
ratios increasing the spinning frequency so that td/tr is
about 2 increases the reliability of the CSA parameters;
however, at higher signal to noise ratios, lower frequency
sample reorientation can be used.

5. Conclusions

This paper demonstrates that Bayesian analysis is a
powerful and intuitive method of interpreting spinning
sideband patterns in solid-state NMR. It produces a map
of probability as a function of d and g where a peak in
the probability indicates likely values of the parameters.
One-dimensional confidence intervals are easily determined
from these posterior probability maps. Such an analysis
requires no assumption about the distribution of d and g,
only that the noise in the sideband intensity is distributed
as a Gaussian. Thus, non-Gaussian distributions were
observed for the value of g in some samples because of
its limited range. In addition, multimodal distributions
were seen when the number of sidebands was limited. Such
a situation could occur in samples where overlapping side-
bands and fast relaxation times conspire to prevent the
measurement of all sidebands and the use of 2D-PASS.
Such multimodal distributions should not be interpreted
as ‘‘false minima’’ in the v2 distribution, but rather as the
current information is not sufficient to uniquely define that
values of d and g. Bayesian analysis in such a situation can
allow the extraction of some information that could then
further be limited by chemical information about the sam-
ple. Ideally, this method could be used to extract the infor-
mation from an entire 2D-PASS in the time domain. Such
a processing procedure would avoid the shearing and Fou-
rier transformation procedure used currently to produce a
spectrum, but would instead skip straight from the time-
domain data to a map of the probability distribution of
the chemically relevant chemical shift parameters. This is
currently not practical due to computer limitations, which
will disappear as computers continue to improve.

Analysis of the information content of spinning side-
band patterns consistently shows that the spinning frequen-
cy should be adjusted such that td/tr is between 2 and 3 for
all signal-to-noise ratios investigated. At lower signal-to-
noise ratios, slightly faster spinning frequencies are indicat-
ed, td/tr closer to 2, while at higher signal-to-noise ratios,
lower spinning frequencies will result in the most accurate
determinations of d and g per unit experiment time. Simu-
lations demonstrate that most of the information about the
values of d and g is in the central five sidebands and that
this information is dependent on the signal-to-noise ratio
and the value of td/tr.

The Bayesian model fitting presented in this paper is
equivalent to a full analysis of the v2 surface of a fit to
the CSA parameters. Both analyses provide unbiased esti-
mators of the parameter values, and contours on both sur-
faces can be defined that bound parameter values with a
given confidence. Many times, in traditional least squares
fitting, i.e., when a full v2 surface is not analyzed, the v2

surface is assumed to be parabolic near its minimum. This
is equivalent to assuming that the parameters are distribut-
ed as a Gaussian, which this paper has shown is not always
true. The Cramer-Rao inequality [8] can be used to define a
lower bound on the uncertainty without any assumptions
about the shape of the v2 surface, but the true uncertainty
can be larger than this value. While traditional least squar-
es and Bayesian analysis provide the same information,
Bayesian analysis provides an intuitively interpretable
probability distribution which can easily be mapped into
the entropy so that the effects of experimental parameters
can be investigated. In addition, the Bayesian approach
can be extended so that situations that are less well defined
can be approached; i.e., when hypothesis testing is neces-
sary or when a distribution of parameters occurs.
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the MIL-8 sample. I would like to thank Ted Clark, Janet
Gaba, Philip Grandinetti, Claus Jeppesen, and Theodore
Stanford for useful comments and discussions.

References

[1] U. Haeberlen, High Resolution NMR in Solids: Selective Averaging,
Academic Press, New York, 1976.

[2] M. Mehring, High Resolution NMR Spectroscopy in Solids, Spring-
er, Berlin, 1983.

[3] M.M. Maricq, J.S. Waugh, NMR in rotating solids, J. Chem. Phys.
70 (1979) 3300–3316.

[4] J. Herzfeld, A.E. Berger, Sideband intensities in NMR spectra of
samples spinning at the magic angle, J. Chem. Phys. 73 (1980) 6021–
6030.

[5] N.J. Clayden, C.M. Dobson, L.-Y. Lian, D.J. Smith, Chemical-shift
tensor analyses and simulations of slow-spinning MAS NMR spectra,
J. Magn. Reson. 69 (1986) 476–487.

[6] D. Fenzke, B. Maess, H. Pfeifer, A novel method to determine the
principal values of a chemical-shift tensor from MAS NMR powder
spectra, J. Magn. Reson. 88 (1990) 172–176.

[7] A.C. Olivieri, Rigorous statistical analysis of errors in chemical-shift-
tensor components obtained from spinning sidebands in solid-state
NMR, J. Magn. Reson. A 123 (1996) 207–210.

[8] P. Hodgkinson, L. Emsley, The reliability of the determination of
tensor parameters by solid-state nuclear magnetic resonance, J.
Chem. Phys. 107 (1997) 4808–4816.

[9] G.L. Bretthorst, J.J. Kotyk, J.J.H. Ackerman, P-31 NMR Bayesian
spectral-analysis of rat-brain invivo, Magn. Reson. Med. 9 (1989)
282–287.

[10] G.L. Bretthorst, Bayesian-analysis. 1. Parameter-estimation using
quadrature NMR models, J. Magn. Reson. 88 (1990) 533–551.

[11] G.L. Bretthorst, Bayesian-analysis. 3. Applications to NMR signal-
detection, model selection, and parameter-estimation, J. Magn.
Reson. 88 (1990) 571–595.

[12] G.L. Bretthorst, Bayesian-analysis. 5. Amplitude estimation for
multiple well-separated sinusoids, J. Magn. Reson. 98 (1992) 501–523.



J.R. Sachleben / Journal of Magnetic Resonance 183 (2006) 123–133 133
[13] C. Antz, K.P. Neidig, H.R. Kalbitzer, A general bayesian method for
an automated signal class recognition in 2D NMR-spectra combined
with a multivariate discriminant-analysis, J. Biomol. NMR 5 (1995)
287–296.

[14] M. Andrec, G.T. Montelione, R.M. Levy, Estimation of dynamic
parameters from NMR relaxation data using the Lipari-Szabo model-
free approach and bayesian statistical methods, J. Magn. Reson. 139
(1999) 408–421.

[15] R.L. Dunbrack, F.E. Cohen, Bayesian statistical analysis of
protein side-chain rotamer preferences, Protein Sci. 6 (1997)
1661–1681.

[16] H.W. Long, R. Tycko, Biopolymer conformational distributions
from solid-state NMR: a-helix and 310-helix contents of a helical
peptide, J. Am. Chem. Soc. 120 (1998) 7039–7048.

[17] R. Havlin, M. McMahon, R. Srinivasan, H. Le, E. Oldfield, Solid-
state NMR and density functional investigation of carbon-13
shielding tensors in metal–olefin complexes, J. Phys. Chem. A 101
(1997) 8908–8913.
[18] D.S. Sivia, Data Analysis: A Bayesian Tutorial, Clarendon Press,
Oxford, 1996.

[19] O.N. Antzutkin, S.C. Shekar, M.H. Levitt, 2-Dimensional side-band
separation in magic-angle-spinning NMR, J. Magn. Reson. A 115
(1995) 7–19.
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